Homological Dimensions of Finitely Presented Modules.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Exact Sequence and Finitely Presented Modules

The notion of quasi-exact sequence of modules was introduced by B. Davvaz and coauthors in 1999 as a generalization of the notion of exact sequence. In this paper we investigate further this notion. In particular, some interesting results concerning this concept and torsion functor are given.

متن کامل

Homological dimensions of complexes of R-modules

Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.

متن کامل

Classifying Serre subcategories of finitely presented modules

Given a commutative coherent ring R, a bijective correspondence between the thick subcategories of perfect complexes Dper(R) and the Serre subcategories of finitely presented modules is established. To construct this correspondence, properties of the Ziegler and Zariski topologies on the set of isomorphism classes of indecomposable injective modules are used in an essential way.

متن کامل

A Coq Formalization of Finitely Presented Modules

This paper presents a formalization of constructive module theory in the intuitionistic type theory of Coq. We build an abstraction layer on top of matrix encodings, in order to represent finitely presented modules, and obtain clean definitions with short proofs justifying that it forms an abelian category. The goal is to use it as a first step to get certified programs for computing topologica...

متن کامل

homological dimensions of complexes of r-modules

let r be an associative ring with identity, c(r) be the category of com-plexes of r-modules and flat(c(r)) be the class of all at complexes of r-modules. we show that the at cotorsion theory (flat(c(r)); flat(c(r))−)have enough injectives in c(r). as an application, we prove that for each atcomplex f and each complex y of r-modules, exti (f,x)= 0, whenever ris n-perfect and i > n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1971

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-11006